Curvature induced layer dilation in thin smectic films
Smectic A (SmA) liquid crystals can be viewed as model systems for lamellar structures. They bridge the study of broken orientational symmetry, the statistical mechanics of membranes, and the long-range periodic order in crystals. Among others, they provide an arena to systematically study the effects of nonlinear elasticity. We demonstrated that a nonlinear energy description is required which is not captured in the classical Landau-de Gennes-Ginsburg model in order to explain the observed layer spacing of highly curved SmA layers. Using X-ray diffraction, we quantitatively determined the dilation of bent layers distorted by antagonistic anchoring. We showed that combined X-ray measurements and theoretical modeling allow for the quantitative determination of the number of curved smectic layers and their thickness in dilated regions.