Other news

Article in Physical Review X

Article in Physical Review X

Other news
20. November 2021

In an extensive study, Jeffrey C. Everts and Miha Ravnik from the Faculty of Mathematics and Physics at University of Ljubljana and the Department F5 of Jožef Stefan Institute examined the details of the coupling of ions and singular topological defects in complex nematic fluids (Phys. Rev. X 2021). The authors showed that topological defects in nematic electrolytes could perform as areas for local separation of electric charge, forming electrically charged cores of defect and in selected geometries also electrical multi-layers. These charge distribution are generalizations of electrical double layers known in isotropic electrolytes. In particular, they show that ions couple very efficiently with the defect cores through the mechanism of ionic solubility, and with the surrounding orientation field deformations through the mechanism of flexoelectricity. The work is a significant contribution towards understanding the electrostatic mechanisms in complex soft matter.

Article in Science Advances

Article in Science Advances

Other news
11. November 2021

The physical behavior of anisotropic charged colloidal particles in nematic solvents is determined by their dielectric anisotropy. Together with the experimental group of Professor Ivan Smalyukh at University of Colorado Boulder the authors Jeffrey C. Everts and Miha Ravnik from the Faculty of Mathematics and Physics at University of Ljubljana and the Department F5 of Jozef Stefan Institute demonstrated anisotropic electrostatic screening for charged colloidal particles in nematic electrolytes. The electrostatic potential and pair interactions decay with an anisotropic Debye screening length, contrasting constant screening length for isotropic electrolytes. Charged dumpling-shaped near-spherical colloidal particles in nematic media are used as model systems, demonstrating competing anisotropic elastic and electrostatic effective pair interactions for colloidal surface charges tunable from neutral to high, yielding particle-separated metastable states (Science Advances 2021, DOI: 10.1126/sciadv.abd0662). The work was published in Science Advances and contributes to the understanding of electrostatic screening in nematic media.

1 27 28 29 30 31 96
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.